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Abstract  Nine coupled climate models from China participating in the Coupled Model Intercomparison Project Phase 6 

(CMIP6) were evaluated in terms of their capability in ensemble historical Arctic sea ice simulation in the context of 56 CMIP6 

models. We evaluated these nine models using satellite observations from 1980 to 2014. This evaluation was conducted 

comprehensively using 12 metrics covering different aspects of the seasonal cycle and long-term trend of sea ice extent (SIE) 

and sea ice concentration (SIC). The nine Chinese models tended to overestimate SIE, especially in March, and underestimate its 

long-term decline trend. There was less spread in model skill in reproducing the spatial pattern of March SIC than in reproducing 

the spatial pattern of September SIC. The error of March SIC simulation was distributed at the margins of sea ice cover, such as 

in the Nordic Seas, the Barents Sea, the Labrador Sea, the Bering Sea, and the Sea of Okhotsk. However, the error of September 

SIC was distributed both at the margins of sea ice cover and in the central part of the Arctic Basin. Five of these nine models had 

capabilities comparable with the majority of the CMIP6 models in reproducing the seasonal cycle and long-term trend of Arctic 

sea ice. 
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1  Introduction 

Coupled climate model is the main tool used to study the 
evolution of sea ice and its potential impact on the Earth’s 
climate. The World Climate Research Program is 
implementing the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) (Eyring et al., 2016; Zhou et al., 2019). 
Each phase of CMIP contains dozens of climate models 
from multiple countries, and their simulations form the 
basis of the Intergovernmental Panel on Climate Change 
assessment report. However, studies have found that these 
climate models still have significant uncertainties in 
simulating sea ice variability (Stroeve et al., 2012; Notz et 
al., 2020; Shu et al., 2020; Long et al., 2021; Shen et al., 
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2021; Watts et al., 2021).  
Sea ice extent (SIE) is the total area where the sea ice 

concentration (SIC) is greater than 15%, and expresses the 
integral of Arctic sea ice distribution. Shu et al. (2020) 
compared the multi-model ensemble mean of SIE of     
44 models in CMIP6 with observations and the CMIP5 
results. The CMIP6 ensemble mean can reproduce the 
seasonal cycle of Arctic SIE. Compared with the CMIP5 
models, the differences among the CMIP6 models were 
smaller. However, the CMIP6 models failed to reproduce 
the accelerated decline trend of Arctic summer sea ice since 
2000. 

Although SIE provides a good general description of 
sea ice distribution, in reality, the formation, melting, and 
drift of sea ice have notable regional differences. Therefore, 
the spatial distribution of Arctic sea ice is also an important 
consideration when evaluating model simulation skill for 
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Arctic sea ice. Qiu et al. (2015) evaluated the Arctic SIC 
of the CMIP5 multi-model mean, but did not discuss the 
differences among the models. Shen et al. (2021) 
evaluated the capability of 36 models participating in 
CMIP6 and their 24 CMIP5 counterparts in simulating the 
mean state and variability of Arctic sea ice cover for the 
period 1979–2014. A performance score was developed 
that can be used to form a weighted average for future 
projections. Their evaluation mainly focused on the 
CMIP6 ensemble mean results, not on each individual 
model. In the 36 models evaluated, six models from China 
were included. Long et al. (2021) evaluated 35 CMIP6 
models using metrics for different aspects of Arctic sea ice. 
They pointed out the performance differences among 
models with different spatial resolutions. Among the    
35 models analyzed, four models were from China. Watts 
et al. (2021) evaluated a subset of CMIP6 models, with 
metrics developed specifically for ice edges, and 
postulated that the model errors in certain regions may be 
linked to oceanic processes. In the models they analyzed, 
only one model was from China. Numerous studies have 
evaluated the CMIP6 models in terms of multi-model 
means with regard to spatial distribution and temporal 
evolution, but only a limited number of studies have 
focused on each individual model (Notz et al., 2020; Shu 
et al., 2020). 

As one of the major countries participating in CMIP6, 
China contributes a total of nine models from six research 
institutions. The differences among models from China and 
their common shortcomings are worth exploring. The 
evaluation of Arctic sea ice in Chinese climate models is not 
only important for understanding current and future sea ice 
changes, but also helpful for improving these models. 
Research work along this direction may be useful to plan 
and coordinate model development and evaluation among 
climate modeling groups in China. The present research 
focused on these nine models in terms of spatial patterns 
and temporal variations of Arctic sea ice. We also compared 

these nine models with 56 CMIP6 models in general. The 
objective of our research is to provide a comprehensive and 
detailed evaluation of these nine models, in terms of their 
skills in reproducing different aspects of Arctic sea ice 
variability.  

This paper is organized as follows. After the 
introduction, the data and methods are presented in  
section 2. The evaluation of Arctic sea ice simulation in 
terms of seasonal cycle, long-term trend, and spatial 
distribution is presented in section 3. Section 4 provides a 
summary and conclusions.  

2  Data and methods 

2.1  Model SIC output and satellite observations 

There are currently 56 models that have submitted their 
outputs to CMIP6. Nine of these models are from China: 
BCC-CSM2-MR (Wu et al., 2019) and BCC- ESM1-0 (Wu 
et al., 2020) from the Beijing Climate Center; 
CAMS-CSM1-0 (Rong et al., 2018, 2019) from the Chinese 
Academy of Meteorological Sciences (CAMS); CAS- 
ESM2-0 (Zhou et al., 2020), FGOALS-f3-L (He et al., 2019, 
2020), and FGOALS-g3 (Tang et al., 2019) from the 
Institute of Atmospheric Physics, Chinese Academy of 
Sciences; CIESM (Lin et al., 2019) from Tsinghua 
University; FIO-ESM-2-0 (Song et al., 2019) from the First 
Institute of Oceanography (FIO), Ministry of Natural 
Resources; and NESM3 (Cao et al., 2018, 2019) from 
Nanjing University of Information Science and Technology 
(NUIST). Details of these nine models are presented in 
Table 1. The sea ice components in three of the nine 
coupled climate models are represented by the Sea Ice 
Simulator (SIS) model (Winton, 2000), whereas the sea ice 
components of the other six models are represented by 
version 4 of the Los Alamos sea ice model (CICE) (Hunke 
et al., 2020). The spatial resolution of all nine models is 
about 1° (Table 1).

   

Table 1  Sea ice model information of nine coupled models from China in CMIP6 

Model acronym Institution Sea ice model Number of grid points (lon.×lat.) Number of members 

BCC-CSM2-MR National Climate Center (NCC) SIS v2 360º×232º 3 

BCC-ESM1-0 National Climate Center (NCC) SIS v2 360º×232º 3 

CAMS-CSM1-0 
Chinese Academy of Meteorological 

Sciences (CAMS) 
SIS v1 360º×200º 3 

CAS-ESM2-0 
Institute of Atmospheric Physics, Chinese 

Academy of Sciences (IAP-CAS) 
CICE4.0 360º×196º 3 

CIESM Tsinghua University (THU) CICE4.1 320º×384º 3 

FGOALS-f3-L 
Institute of Atmospheric Physics, Chinese 

Academy of Sciences (IAP-CAS) 
CICE4.0 360º×218º 6 

FGOALS-g3 
Institute of Atmospheric Physics, Chinese 

Academy of Sciences (IAP-CAS) 
CICE4.0 360º×218º 3 

FIO-ESM-2-0 
The First Institute of Oceanography (FIO), 

Ministry of Natural Resources 
CICE4.0 320º×384º 5 

NESM3 
Nanjing University of Information Science 

and Technology (NUIST) 
CICE4.1 320º×384º 4 
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Monthly SIC outputs of CMIP6 historical runs were 
used in this study. To reduce the influence of internal 
variability on our results, the model outputs used were the 
ensemble means, obtained from the member outputs 
submitted by each model to CMIP6. To date, the number of 
members from these nine models has varied from three to 
six (last column in Table 1). In CMIP6, historical simulation 
refers to simulation since 1850 driven by various external 
forcing fields based on observations to evaluate the 
capability of models to reproduce climate variability from 
1850 to 2014. In this study, the model SIC fields from 1980 
to 2014 were compared with observations.  

The observational data were the satellite remote 
sensing product G02202 (Meier et al., 2017) from the 
National Snow and Ice Data Center (NSIDC). This data set 
contains SIC obtained by two inversion algorithms and SIC 
obtained by combining these two algorithms based on the 
National Oceanic and Atmospheric Administration (NOAA) 
Climate Data Record (CDR). The two inversion algorithms 
are the National Aeronautics and Space Administration 
(NASA) Team inversion algorithm and Bootstrap inversion 
algorithm. The spatial resolution of satellite SIC 
observation is 0.25º×0.25º. Because the models had 
different spatial resolutions from that of the observations 
and among the models, all the data were interpolated 
bilinearly to a 1º×1º grid. For the SIE computation, the SIC 
from the model grid was first interpolated to a 1º×1º grid, 
and the 15% criterion was then used.  

2.2  Evaluation method of spatial distribution of SIC  

To evaluate the performance of these nine models in the 
simulation of Arctic SIE, we calculated SIE as the sum of 
the areas of all grid points with SIC greater than 15% and 
north of 30.98ºN, which is consistent with the definition 
used by the NSIDC and other researchers. The evaluation of 
SIE was focused on its seasonal cycle and long-term trend. 
The seasonal cycle of SIE was determined based on the 
multi-year average of SIC from 1980 to 2014. The 
long-term trend of SIE was obtained from a linear fit of SIE 
from 1980 to 2014. The present research also compared the 
standard deviations after removing a linear trend and the 
annual range of SIE, the difference of maximum and 
minimum SIE. The standard deviation after the linear trend 
is removed represents the fluctuations of Arctic sea ice. The 
annual range is the difference between the mean SIEs in 
March and September. 

The spatial distribution of sea ice was also evaluated in 
terms of SIC and its long-term trends in March and 
September. In particular, the spatial distribution of SIC 
refers to the average SIC from 1980 to 2014. The long-term 
trend of SIC is the linear trend from 1980 to 2014 that is 
significant at the 95% level. To quantify the skill of a model 
in simulating the distribution and long-term trend of SIC, 
the Taylor score (TS) index proposed by Taylor (2001) was 
used,  
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where R is the pattern correlation coefficient between the 
model results and observations, and R0 is the maximum 
attainable pattern correlation coefficient between the model 
results and observations, which was taken as 1 in the 
present research. The pattern correlation coefficient of SIC 
was computed using SIC from each grid point. For the 
pattern correlation coefficient of the long-term SIC trend, 
the grid points without significant trends were assigned zero 
trend and used in the computation. The variables m  and 

0  are the standard deviations of the modeled and 

observed spatial fields, respectively. The values of the TS 
index were between 0 and 1. A larger value for this index 
indicates a more similar model spatial pattern to the 
observations.  

To show the common spatial characteristics of model 
errors, the statistic D, the multi-model root mean square 
error (RMSE), was used,  
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In formula (2),  0X is the observation value, iX is the 

equivalent simulated value of  0X   from the i-th model, and 

n is the total number of models. This statistic can be used to 
represent the common error of all models compared against 
observations. 

2.3  Metrics for evaluation 

To comprehensively assess the capability of the models in 
simulating Arctic sea ice, a method developed by Huang et 
al. (2017) and Long et al. (2021) was used. In this method, 
m metrics are chosen to comprehensively evaluate the 
capability of each model. First, for the observation of the 
k-th metric Bk, Sk is defined as  
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in which ,i kx  is the i-th model simulation for the k-th 

metric. By definition, Sk represents the difference of the 
models in reproducing the observations. Then, for a total of 
m metrics, the E-score for the i-th model is 
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which combines the skill of the model in reproducing all m 
metrics in a non-dimensional manner. According to 
formulae (3) and (4), the E-score represents the 
comprehensive skill in reproducing the observed m metrics. 
A smaller E-score is associated with better model 
simulation capability.  
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When the E-score is computed for all n models and m 
metrics, the absolute value of the term inside the square root 
of formula (4),  

,
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can be used to measure the skill of the i-th model in 
reproducing the k-th metric and analyze its contribution to 
the comprehensive skill of the model, the E-score. Twelve 
metrics were used in our analysis, which are listed in 

Table 2 with their respective values for the nine Chinese 
models. For the metrics associated with SIE, the March 
SIE and its standard deviation, September SIE and its 
standard deviation, long-term trend of March SIE, 
long-term trend of September SIE, annual long-term trend 
of SIE, and range of SIE, a single value is given for each 
metric. For metrics associated with the comparison of 
two-dimensional fields, March SIC, September SIC, and 
their long-term trends, the TS index as defined in  
formula (1) was used as a metric.  

Table 2  Sea ice metrics from observation and nine model simulations 

Mean SIE/(106 km2) STD of SIE/(106 km2) Long-term trend/(104 km2·a−1） SIC TS index SIC trend TS index
Model name 

Mar. Sep. 

Range of  SIE 
/(106 km2) Mar. Sep. Mar. Sep. Annual Mar. Sep. Mar. Sep. 

OBS 15.55 6.37 9.17 0.47 1.08 −3.78 −9.03 −5.92 1.00 1.00 1.00 1.00 

BCC-CSM2-MR 17.89 8.14 9.76 0.38 0.81 −3.16 −6.68 −5.21 0.59 0.72 0.07 0.18 

BCC-ESM1-0 19.21 9.20 10.01 0.53 0.82 −3.58 −7.26 −4.34 0.54 0.62 0.04 0.05 

CAMS-CSM1-0 21.39 8.73 12.66 0.36 0.41 −2.07 −2.77 −2.52 0.59 0.87 0.03 0.01 

CAS-ESM2-0 15.95 3.03 12.91 0.58 0.89 −4.96 −7.87 −4.58 0.47 0.20 0.03 0.04 

CIESM 14.63 0.14 14.49 0.20 0.10 −1.54 −0.43 −2.20 0.76 0.00 0.27 0.00 

FGOALS-f3-L 18.24 7.02 11.22 0.40 0.81 −3.22 −6.82 −4.09 0.56 0.70 0.03 0.07 

FGOALS-g3 18.95 11.05 7.89 0.70 0.25 −6.07 −1.73 −5.93 0.51 0.54 0.07 0.05 

FIO-ESM-2-0 17.10 5.30 11.79 0.39 1.04 −3.22 −9.05 −4.02 0.81 0.51 0.64 0.04 

NESM3 19.71 6.41 13.30 0.78 1.42 −7.12 −13.25 −8.86 0.62 0.80 0.07 0.65 

Notes: The italic and bold numbers mean that the result is not significant at 95% level; Taylor Score (TS) indices are calculated following formula 2. 

 

3  Results 

3.1  Seasonal cycle of Arctic SIE 

For the nine coupled climate models listed in Table 1, we 
evaluated their capabilities to simulate the seasonal cycle of 
Arctic SIE (Figure 1). Figure 1 indicates that the observed 
Arctic SIE increased to its maximum in March and then 
decreased to its minimum in September. Eight out of the 
nine models could capture the timing of the observed 
seasonal cycle of Arctic SIE, but the ninth model, NESM3, 
reached its Arctic SIE maximum in April instead of March. 
Based on the SIE observation from 1980 to 2014 (Table 2), 
the average March SIE was 15.55×106 km2, with a standard 
deviation of 0.47×106 km2. One model yielded March SIE 
within the range of the observed SIE plus and minus one 
s t an d a r d  dev i a t i o n  o f  ob se r v ed  S I E ;  th a t  i s , 
[16.02, 15.08]×106 km2. Seven of the nine models 
overestimated March SIE. For September, the range of 
observed average SIE plus and minus one standard 
deviation was [7.45, 5.29]×106 km2. The results of three of 
the nine models were within this range. Four of the nine 
models overestimated September SIE and two models 
underestimated it; CIESM severely underestimated 
September SIE because of abnormally high shortwave 
radiation at high latitudes (Lin et al., 2020). The March SIE 

result of CAS-ESM2-0 was the most similar one to the 
observations. The September SIE result of NESM3 was the 
most similar one to the observations. Compared with the 
observations, CIESM results underestimated Arctic SIE for 
all months.  

To gain insight into the skills of these nine models in 
simulating the seasonal cycle of SIE, we compared them 
with the CMIP6 models. The gray shaded area in Figure 1 
represents the multi-model means (MMMs) and their 
standard deviations (STDs) of the 56 CMIP6 climate 
models. The shaded upper and lower limits of each month 
indicate MMM + STD and MMM − STD, respectively. The 
MMMs could reproduce the observed seasonal cycle of SIE 
very well, which is a major improvement of the CMIP6 
models compared with the CMIP5 models (e.g., Notz et al., 
2020; Shu et al., 2020). The SIEs for two of the nine models 
were distributed in the MMM ± STD range in March. Two 
SIEs were distributed in the MMM ± STD range for 
September. Compared with the CMIP6 models in general, 
the nine Chinese models tended to overestimate SIE, 
especially in March. 

Table 2 presents the mean and seasonal extreme values 
of SIE during 1980–2014 for the nine Chinese models. The 
mean value represents the total Arctic SIE, and the extreme 
values in March and September are represented by the 
amplitude of the seasonal SIE cycle. As shown in Table 2, 
the mean values of SIE simulated by FIO-ESM-2-0 and 
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Figure 1  The mean seasonal cycle of sea ice extent for 1980–2014. The grey shaded region is the multi-model ensemble mean from    
56 CMIP6 models plus and minus its standard deviation. 

CAS-ESM2-0 were more similar to the observations than 
were the mean SIEs of the other models. Among the nine 
models, eight models overestimate the maximum values of 
SIE; five models overestimate the minimum values of SIE. 
Three models underestimated the minimum values of SIE, 
and the minimum SIE value of NESM3 was similar to the 
observed value. For the seasonal cycle amplitude, the best 
simulations were produced by BCC-CSM2-MR and 
BCC-ESM1-0. 

3.2  Long-term trends in SIE 

The long-term trends of SIE simulated by the nine Chinese 
models are also presented in Table 2, along with their 
observational counterparts. For the observed long-term 
trend of March SIE, the 95% significant interval was  
[–4.69, –2.88]×104 km2·a–1. Four of the nine models showed 
declining trends within this interval. For the long-term trend 
of September SIE, the 95% significant interval was  
[–10.96, –7.10]×104 km2·a–1 based on observations. Three of 
the nine models indicated declining trends within this 
interval. Five of the nine models underestimated the 
declining September SIE trend. The 95% significance 
interval of the annual long-term trend of SIE was 
[–6.29, –5.55]×104 km2·a–1. Only one model showed a 
declining SIE trend within this interval. Seven of the nine 
models underestimated the annual trend. For the declining 
trend of September SIE, the result of BCC-CSM2-MR was 
the most similar one to the observation. Thus, these nine 
models tended to overestimate SIE, especially for March, 
and underestimate the long-term declining trend of SIE, 
especially for September. 

3.3  Spatial distribution of SIC 

To analyze the spatial distribution of sea ice simulation, SIC 
was evaluated for the nine models. Figure 2 shows the 

observed Arctic SIC in March, the multi-model means from 
the 56 CMIP6 models and nine Chinese models, and the 
multi-model RMSE for the 56 models and nine Chinese 
models based on formula (2). Satellite observations 
captured in March showed that the entire Arctic Basin was 
covered by SIC above 95%, and that the SIC gradually 
decreased from high latitudes to low latitudes at the margins 
of sea ice cover. The common errors of the nine Chinese 
models and 56 CMIP6 models were mainly distributed at 
the margins of sea ice cover, such as in the Nordic Seas, the 
Barents Sea, the Labrador Sea, the Sea of Okhotsk, and 
south of the Bering Strait. The models tended to 
overestimate SIC in these regions. The overestimation was 
greatest in the Nordic Seas and Barents Sea, followed by 
the Sea of Okhotsk and the Labrador Sea. Compared with 
the 56 CMIP6 models, the nine models from China 
produced greater overestimation of SIC in the Nordic Sea, 
the Barents Sea, and the Sea of Okhotsk (Figures 2b, 2c). 
The multi-model RMSEs for the 56 models and the nine 
Chinese models reflect these results. 

Figure 3 shows the bias of the 1980–2014 mean March 
SIC between the nine models from China and the observed 
SIC. All nine models could simulate the March SIC in the 
Arctic Basin reasonably well, but the performance of each 
model varied for the margins of sea ice cover. Observations 
indicated that Arctic sea ice could extend to the western part 
of the Sea of Okhotsk in March. BCC-CSM2-MR, 
BCC-ESM1-0, CAMS-CSM1-0, CAS-ESM2-0, FGOALS- 
g3, and NEMS3 overestimated SIC in this region, whereas 
CIESM and FGOALS-f3-L underestimated SIC in this 
region. In the Nordic Seas and the Barents Sea, sea ice 
covered only the northern parts in March and extended 
southward in the Labrador Sea and along the coast of 
northern Europe (Figure 2a). FIO-ESM2-0 and CIESM 
simulations of this region were relatively similar to the 
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Figure 2  Spatial distribution of 1980–2014 March mean SIC from observation (a), 56 CMIP6 models (b), 9 Chinese models (c), root 
mean square error of 56 models (d), and root mean square error of 9 Chinese models calculated by formula (2) (e). 

observations. The other seven models overestimated SIC in 
the Nordic Seas and the Barents Sea. For the coastal region 
of the Labrador Sea, the simulations of BCC-CSM2-MR, 
BCC-ESM1-0, and FIO-ESM-2-0 of the SIC in this region 
were more similar to the observations than were those of the 
other models, although they resulted in some 
underestimation. CAMS-CSM1-0, FGOALS-f3-L, and 
NESM3 overestimated SIC in this region.  

It is worth noting that in the counterpart model version 
participating in CMIP5, FIO-ESM overestimated the SIC on 
the east coast of North America (Figure 3 of Shu et al., 
2013). Similarly, in the version participating in CMIP5, 
FGOALS-g2 underestimated the SIC in the same area in 
March (Figure 1 of Xu et al., 2013). In this aspect, for the 
model versions participating in CMIP6, the simulations of 
these two models were improved compared with their 
respective versions participating in CMIP5.  

Table 2 presents the TS indices of the nine Chinese 
models in reproducing the spatial features of March SIC. Of 
the nine models, FIO-EMS-2-0 had the highest TS index, 
indicating that this model could best reproduce the spatial 
features of the observed SIC in terms of the spatial 
correlation and spatial variance of SIC, as shown in  
formula (1). 

The observed SIC in September showed that the sea 
ice edge retreated to around 75°N because of sea ice 
melting (Figure 4a). Compared with the simulation results 
for March, there was a considerable difference between the 

model results in September and the observations. Both the 
56 CMIP6 models and the nine Chinese models had SIC 
error in the Arctic Basin and the margin of sea ice cover. In 
addition to the large error in the margin of sea ice cover, 
there was also SIC error of about 20%–40% in the Arctic 
Basin. The RMSE from the nine Chinese models was larger 
than that of the 56 CMIP6 models in the central Arctic 
region. Compared with the 56 CMIP6 models, the nine 
Chinese models tended to more severely underestimate SIC 
in this region. 

In contrast to the results for March, the modeled 
September SIC had biases in both the margin of sea ice 
cover and the central Arctic Basin (Figure 5). Among the 
nine models, CAMS-CSM1-0 could best simulate the 
spatial distribution of SIC in September with the highest 
TS index, as shown in Table 2. For the Nordic Seas and 
the Barents Sea, BCC-CSM2-MR, BCC-ESM1-0, and 
FGOALS-g3 overestimated SIC in this region. For the 
central Arctic Basin, BCC-CSM2-MR, BCC-ESM1-0, 
CAMS-CSM1-0, and FGOALS-g3 accurately simulated 
SIC. However, CAS-ESM2-0, CIESM, and FIO-ESM- 
2-0 underestimated SIC for this region, and CIESM had 
the most negative bias. It is worth noting that in the 
version participating in CMIP5, BCC-CSM2-MR 
overestimated SIC off of northwestern Greenland in 
September (Figure 1 of Wang et al., 2020). In the version 
participating in CMIP6, the simulation of this model was 
improved in this aspect. 
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Figure 3  The bias of 1980–2014 mean March SIC of nine models from China (model minus observation). 

In the CIESM simulation, only a very small amount of 
sea ice was present in the Arctic Ocean in September 
(Figure 5). Lin et al. (2020) showed that the summer SIEs 
of CIESM in both the Northern and Southern hemispheres 
were abnormally low, and that the summer SIE of the Arctic 
was less than 1.0 × 106 km2. In this model, poleward of 60°, 
the absorbed shortwave radiation was abnormally high by 
50 W·m−2, and the temperature from 1000 hPa to 700 hPa 
was abnormally high by 5 . The specific reasons for this ℃
deviation (such as sea ice albedo feedback and the effects of 
clouds) are still under investigation (Lin et al., 2020).  

According to the TS indices listed in Table 2, the skill 
of these nine models in reproducing March SIC was 
comparable, whereas the skill in reproducing September 
SIC varied greatly. The standard deviation of the TS indices 
for March SIC was 0.11, varying from 0.47 to 0.81. In 
contrast, the standard deviation for September SIC was 0.28, 
varying from 0.00 to 0.87. The difference of the standard 
deviations for March and September SIC was significant at 
the 95% level based on the F-test, which indicates that it 
was more difficult to reproduce the spatial features of 
September SIC. 

3.4  Spatial distribution of long-term trends in SIC 

Figure 6 shows the observed long-term trend of SIC in 
March, the multi-model mean trend from the 56 models and 
nine Chinese models, and the multi-model RMSE based on 
formula (2). Observations showed that the decline in March 
SIC was not widespread. The SIC decline trend was around 
2% per year in the Barents Sea, where the decline was 
relatively rapid. The spatial distribution of the decline trend 
of SIC showed that the rate of decrease of sea ice cover in 
the margin region was higher than that in the central part of 
the Arctic Basin. Overall, the models overestimated the area 
of sea ice decline. The regions of large model errors were in 
the Sea of Okhotsk, the Barents Sea, and south of 
Greenland. Compared with the 56 CMIP6 models, the nine 
Chinese models tended to overestimate the sea ice trend and 
produce larger errors in the Nordic Seas, the Barents Sea, 
and the Labrador Sea. 

The nine models from China had various skill levels in 
reproducing the trend of SIC in March (Figure 7). Notably, the 
observations showed regions with a small increasing trend 
in SIC near the Bering Strait, which was also shown in a 
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Figure 4  Spatial distribution of 1980–2014 September mean SIC from observation (a), 56 CMIP6 models (b), 9 Chinese models (c), root 
mean square error of 56 models (d), and root mean square error of 9 Chinese models calculated by formula (2) (e). 

 
Figure 5  The bias of 1980–2014 mean September SIC of nine models from China (model minus observation). 
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Figure 6  Spatial distribution of 1980–2014 linear trend of Arctic SIC in March from observation (a), 56 models (b), 9 Chinese models (c), 
root mean square error of linear trend of 56 models (d), and root mean square error of linear trend of 9 Chinese models calculated by 
formula (2) (e). The color bar for (a), (b), and (c) is shown vertically on the right and the color bar for (d) and (e) is shown horizontally on 
the bottom. 

detailed analysis of sea ice area trends by Peng and Meier 
(2018). However, none of the models were capable of 
s imulat ing this  feature.  CIESM and FIO-ESM- 
2-0 simulated the decline of SIC in the Sea of Okhotsk, 
whereas BCC-ESM1-0, CAS-ESM2-0, and FGOALS-g3 
simulated the decline of SIC at lower latitudes. The reason 
is that the latter three models overestimated the SIC in the 
region, shifting the sea ice margin southward, and thus also 
shifting the SIC decline region southward. According to the 
observations, there was a band of decline in SIC extending 
from the Barents Sea to the east coast of Greenland. 
NESM3 could simulate this feature, but overestimated the 
decline trend. FIO-ESM-2-0 had the highest TS index in 
reproducing the March SIC trend (Table 2). 

It was more challenging to reproduce the decline trend 
in September SIC in these models (Figure 8). According to 
the observations, the decline of Arctic sea ice was more 
notable in September, and the region characterized by the 
strongest decline trend was located at the margin of sea ice 
cover. However, compared with the observations, there 
were large discrepancies in the modeled margins of sea ice 
cover, and therefore in the region of the decline trend.  

Figure 9 shows the spatial distribution of the long-term 
trend of SIC in September for the nine Chinese models. The 
observed decline trend of SIC in September was mainly 

distributed in a circular region extending westward from the 
Beaufort Sea to the Laptev Sea and Kara Sea (Figure 8a), 
which also represented the sea ice margin in September 
(Figure 4a). BCC-CSM2-MR simulated the spatial 
characteristics of the decline area of SIC, but the magnitude 
of the decline was underestimated, and SIC decline also 
appeared in the Barents Sea region. The reason may be that 
the BCC-CSM2-MR simulation showed sea ice in the 
Barents Sea in September (Figure 5), whereas no sea ice 
occurred in this region in the September observations 
(Figure 4). In the simulations of CAS-ESM2-0 and 
FIO-ESM-2-0, the area of SIC decline shifted to the central 
part of the Arctic Basin. Because the area of SIC decline is 
related to the distribution of SIC to a certain extent, such 
errors may be related to the fact that the two models 
underestimated the extent of sea ice in September, and that 
the distribution of sea ice shifted to the central part of the 
Arctic Basin (Figure 5). NESM3 could simulate the rapid 
decline of SIC from the Beaufort Sea to the Kara Sea 
reasonably well, and also had the highest TS index in 
reproducing the September SIC trend (Table 2).  

From Table 2, it is interesting to note that the TS 
indices for the long-term trend of SIC were much lower 
than those for March and September SIC. It was easier for 
the models to reproduce the climatological SIC than its 
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Figure 7  Spatial distribution of the 1980–2014 linear trend of Arctic SIC in March for nine models from China. 

long-term trend. For the TS indices of the same feature 
(either the SIC trend or SIC), the variability of the TS 
indices from different models may be used as a measure of 
the spread of the skill of these models. The standard 
deviation of the TS indices of the SIC trend for March, 0.20, 
was comparable to that of the long-term SIC trend for 
September, 0.21. This analysis shows that the spread in the 
skill of these models in reproducing the long-term SIC trend 
was roughly the same in March and September, indicating 
that it was equally challenging to reproduce the long-term 
SIC trends in both March and September. The correlation 
coefficient of the TS indices of March SIC and its long-term 
trend (0.80) was significant at the 95% level, whereas the 
correlation coefficient of the TS indices of September SIC 
and its long-term trend (0.43) was not. This may be 
attributed to the differences of the spatial distribution of 
March SIC and its long-term trend (Figures 2, 3, 6 and 7) 
compared with September SIC and its long-term trend 

(Figures 4, 5, 8 and 9). For March SIC, both the error and 
long-term trend were located at the margin of sea ice cover. 
However, for September SIC, the error of SIC existed both 
at the margin of sea ice cover and in the central part of the 
Arctic Basin. The long-term trend of September SIC was 
only located at the margin of sea ice cover. 

3.5  Comprehensive evaluation of model sea ice 
simulation 

In the previous sections, we compared the sea ice 
simulations of nine models using different metrics of SIE 
and SIC. This section summarizes these metrics to 
comprehensively assess the sea ice simulation of each 
model. The metrics for SIE were the mean SIE in March 
and September, its standard deviation, the annual range of 
SIE, the long-term trends of SIE in March and September, 
and the annual trend of SIE. These eight metrics describe 
how well the model simulated the average, seasonal 
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Figure 8  Spatial distribution of 1980–2014 linear trend of Arctic SIC in September from observation (a), 56 models (b), 9 Chinese 
models (c), root mean square error of linear trend of 56 models (d), and root mean square error of linear trend of 9 Chinese models 
calculated by formula (2) (e). The color bar for (a), (b), and (c) is shown vertically on the right and the color bar for (d) and (e) is shown 
horizontally on the bottom. 

variability, and long-term trend of SIE. Regarding the 
spatial distribution of sea ice, the TS index was used to 
represent the spatial distribution of SIC and its long-term 
trends in March and September. The specific values of all 
metrics are given in Table 2. Bold numbers in columns 7, 8 
and 9 indicate that the results were not significant at the 
95% level for the linear trends: the September and annual 
trends of SIE from CAMS-CSM1-0, and the March, 
September, and annual trends from CIESM. 

To compare the differences of the nine models for each 
metric and the overall simulation capability, Table 3 shows 
the ei,k values of 12 metrics for the nine models and the 
E-scores obtained by combining all the metrics. The E-scores 
in the last row were calculated following formulae (3) and (4). 
The computation of E-scores used the 12 metrics from all  
56 models to compare the nine models with the 56 CMIP6 
models. In Table 3, rows 1 to 12 list the ei,k values calculated 
using single metrics following formula (5), which represent 
the skill of the model in reproducing the respective metrics. 
The value of the E-score represents the difference between 
the model and the observation, and a smaller E-score 
indicates that the simulation of the model was better. 

Overall, several models, BCC-CSM2-MR, FGOLA- 
f3-L, and BCC-ESM1-0, had similar low E-scores below or 
around 3, indicating that these models performed better in 
reproducing the historical variability of SIC and SIE. 
CIESM had the highest E-score among the nine Chinese 
models because this model could not reproduce the sea ice 
variability in September, which was caused by 
overestimation of solar shortwave radiation, especially at 
high latitudes poleward of 60° (Lin et al., 2020). However, 
CIESM did have a low ei,k value for March SIC. Another 
interesting example is FGOALS-g3. Although FGOALS-g3 
had the second highest E-score of the nine models, it could 
reproduce the annual and March SIE trends very well, 
indicating the limitation in evaluating coupled climate 
models using spatially integrated metrics such as SIE. 
Models can simulate the correct SIE with incorrect SIC. 
Future model evaluation should emphasize spatial 
distribution and diagnostic analysis of model output. 

The ei,k values of different metrics represent the 
relative skill of these models in reproducing the respective 
metrics. It is interesting to note that the variability of ei,k 
values of the March and September long-term SIC trends  
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Figure 9  Spatial distribution of the 1980–2014 linear trend of Arctic SIC in September of nine models from China. 

was relatively small, indicating comparable skill of these 
models in reproducing the long-term SIC trend. 

There were positive significant correlation coefficients 
between some of the ei,k values (Table 4). The ei,k values of 
March SIC and September SIC were positively related with 
those of the long-term trends of March and September SIC, 
respectively. There were also positive correlations between 
September SIC and September SIE, September SIC and the 
standard deviation of September SIE, September SIC and 
the September SIE trend, and September and March SIC, 
indicating the important role of September sea ice 
simulation in the overall skill of a coupled climate model. 

To compare the nine Chinese models with the      
56 CMIP6 models, Figure 10 presents a histogram of the 
E-scores of these 56 models with the E-scores of the nine 
Chinese models, shown as vertical lines. The E-scores of 
the 56 model had a wide spread, with a median value as 
2.91, and the 25th and 75th percentile values were 2.41 and 
4.03, respectively. Five of the nine Chinese models were 

within the 25th and 75th percentiles, indicating that these 
five models had skill comparable with the majority of 
CMIP6 models in reproducing Arctic sea ice variability, 
especially its seasonal cycle and long-term trend. 

4  Conclusion 

Nine coupled climate models from China participating in 
CMIP6 were evaluated in terms of historical Arctic sea ice 
simulation, especially SIE and SIC, in the context of 
56 CMIP6 models. The ensemble SIE and SIC results of 
Arctic sea ice simulation by these models from 1980 to 2014 
were compared against satellite observation using 12 metrics 
and ultimately a single comprehensive E-score. These metrics 
included those for spatially integrated variables, such as SIE 
and the standard deviation of SIE for March and September, 
the long-term trends of SIE in March and September, the 
annual range, and the trend of SIE. The spatial distribution 
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Table 3  E-Score of 12 Arctic sea ice metrics from Table 2. E-Scores are calculated from formulae (3) and (4). Rows 1 to 12 are the skill 
score calculated using a single metric following formula (5), and the last row is the E-Score calculated using all 12 sea ice 
metrics 

 BCC-CSM2-MR BCC-ESM1-0 CAMS-CSM1-0 CAS-ESM2-0 CIESM FGOALS-f3-L FGOALS-g3 FIO-ESM-2-0 NESM3 

Mar. SIE 0.17 0.3 1.22 0.23 1.25 0.35 0.02 0.96 0.73 

Sep. SIE 0.22 0.64 0.6 1.91 3.18 0.39 1.49 1.62 0.24 

STD of Mar. SIE 0 0.3 0.14 0.01 1.04 0.35 2.77 0.37 1.17 

STD of Sep. SIE 0.15 0.6 1.71 0.63 2.14 0.65 1.35 0.63 0.93 

Range of SIE 0.37 0.24 0.79 1.43 1.44 0.04 1.32 0.39 1 

Mar. SIE trend 0.1 0.01 0.47 0.46 1.37 0.13 2.59 0.46 1.23 

Sep. SIE trend 0.21 0.67 1.88 0.39 1.88 0.79 1.29 0.57 0.95 

Annual SIE trend 0.29 0.65 1.41 0.56 1.54 0.76 0 0.79 1.22 

Mar. SIC 1.61 1.81 1.62 2.06 0.92 1.72 1.9 0.74 1.47 

Sep. SIC 0.86 1.16 0.4 2.44 3.04 0.93 1.4 1.5 0.62 

Mar. SIC trend 1.13 1.14 1.15 1.14 1.1 1.14 1.12 1.02 1.13 

Sep. SIC trend 1 1.11 1.16 1.13 1.17 1.1 1.12 1.12 0.65 

E-score 2.44 3.01 4.07 4.43 6.32 2.9 5.47 3.24 3.46 

 

Table 4  Correlation coefficients of skill scores of different metrics 

 Mar. SIE Sep. SIE 
STD of Mar. 

SIE 
STD of Sep. 

SIE 
Range of 

SIE 
Mar. SIE 

trend 
Sep. SIE 

trend 
Annual 

SIE trend
Mar. SIC Sep. SIC 

Mar. SIC 
trend 

Sep. SIC 
trend 

Mar. SIE 1            

Sep. SIE 0.28* 1           

STD of Mar. SIE 0.15 0.00 1          

STD of Sep. SIE 0.34* −0.04* −0.04 1         

Range of SIE 0.61* 0.2 0.27* 0.52* 1        

Mar. SIE trend 0.09 0.04 0.80* 0.16 0.40* 1       

Sep. SIE trend 0.25 0.37* −0.08 0.94* 0.44* 0.16 1      

Annual SIE trend 0.33* −0.02 0.05 0.53* 0.46* 0.38* 0.65* 1     

Mar. SIC −0.09 0.18 −0.05 0.16 0.16 0.01 0.14 0.05 1    

Sep. SIC 0.16 0.89* −0.08 0.52* 0.24 0.00 0.34* −0.04 0.33* 1   

Mar. SIC trend 0.06 0.34* −0.03 0.31* 0.11 0.15 0.34* 0.30* 0.52* 0.31* 1  

Sep. SIC trend 0.04 0.31* −0.15 0.49* 0.09 0.03 0.53* 0.30* 0.19 0.35* 0.43* 1 

Note: * indicate that 95% significance level tests have been passed, respectively 

 
of SIC and its long-term trend were evaluated based on the 
Taylor score, which combines the spatial pattern correlation 
and spatial variability of two fields. 

In terms of SIE simulation, eight of the nine models 
had skill comparable to that of other CMIP6 models, 
whereas one model severely underestimated September SIE. 
The nine models tended to overestimate Arctic SIE, 
especially for March, and underestimate the long-term trend 
of SIE. Seven of the nine models overestimated March SIE. 
Five of the nine models underestimated the long-term trend 
of September SIE. Seven of the nine models underestimated 
the annual trend of SIE.  

For March, all models could simulate the spatial 
distribution of mean SIC reasonably well. The errors were 

mainly distributed at the margin of sea ice cover, and the 
errors were the largest in the middle of the Sea of Okhotsk, 
the Nordic Seas, and the Barents Sea, with the maximum 
value reaching 90%. Compared with the result for March, 
the spatial distribution of September SIC error was spread 
over a broader region. Errors existed both in the central part 
of the Arctic Basin and at the margin of sea ice cover. There 
was greater spread of model skill in reproducing September 
SIC than in reproducing March SIC.  

The region with significant long-term trends of SIC in 
both March and September was the margin of sea ice cover. 
Satellite observations showed a decline trend in March SIC 
in the Nordic Seas, Barents Sea, and Sea of Okhotsk, with a 
slight increase in SIC south of the Bering Strait. All nine 
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Figure 10  The histogram of E-score of 56 CMIP6 models. The 
E-score of the nine Chinese models are shown as vertical lines. 

models failed to reproduce the trend of increasing SIC south 
of the Bering Strait. BCC-CSM2-MR, FIO-ESM-2-0, and 
NESM3 could reproduce the decline trend of SIC in the 
Nordic Seas and the Barents Sea to a certain extent. For 
September, models encountered greater difficulty 
reproducing the SIC decline trend from the Beaufort Sea to 
the Laptev Sea and Kara Sea in terms of spatial distribution 
and magnitude. The error in SIC simulation influenced the 
simulation of the long-term trend by shifting the spatial 
distribution of SIC.  

Based on 12 metrics from the 56 CMIP6 models, a 
comprehensive metric, the E-score, was computed to 
compare the sea ice simulation of the nine Chinese 
models with that of the other CMIP6 models. Several of 
the Chinese models had relatively high skill in 
reproducing Arctic sea ice, such as BCC-CSM2-MR, 
FGOALS-f3-L, and BCC-ESM1-0. However, some 
models could outperform other models for certain aspects. 
The E-scores of the 56 CMIP6 models had a wide spread. 
Five of the nine Chinese models had E-scores within the 
25th and 75th percentiles of the 56 CMIP6 models, and 
had skill comparable with the majority of the CMIP6 
models. In the present work, we only discuss the 
simulation results for Arctic sea ice. More detailed 
research is needed to diagnose and analyze the causes of 
model simulation error and determine how these models 
can be improved. 
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